Рабочая программа внеурочной деятельности «Многоликая химия» по химии для 11 класса.

Статус программы: рабочая программа внеурочной составлена на основе:

- 1. Закона «Об образовании в Российской Федерации» от 29.12.2017г. № 273- ФЗ (с изменениями);
- 2. Учебного плана МКОУ «Булуктинской СОШ»;

Основной акцент при разработке программы курса делается на решении задач по блокам: «Общая химия», «Неорганическая химия», «Органическая химия». Особое внимание уделяется методике решения задач 2 части по контрольно- измерительным материалам ЕГЭ.

Возраст обучающихся: 11 класс

Срок реализации: 1 год

Разделы программы:

- 1. Расчеты по химическим формулам.
- 2. Вычисления по уравнениям химических реакций
- 3. Химический эксперимент и цифровые лаборатории
- 4. Введение в биохимию
- 5. Химический состав организмов и общее понятие об обмене веществ и энергии в живой природе
- 6. Белки. Распад и биосинтез белков
- 7. Ферменты
- 8. Витамины и некоторые другие биологически активные соединения 9. Нуклеиновые кислоты и их обмен
- 10. Углеводы и их обмен
- 11. Липиды и их обмен
- 12. Биологическое окисление и синтез АТФ
- 13. Гормоны и их роль в обмене веществ
- 14. Взаимосвязь и регуляция обмена веществ. Проблемы биохимической экологии
- 15. Химический элемент
- 16. Вешество
- 17. Химические реакции
- 18. Познание и применение веществ
- 19. Проектная работа

Цели и задачи изучения: расширить, углубить и обобщить знания о строении, свойствах и функциях биомолекул; сформировать устойчивый интерес к профессиональной деятельности в области естественных наук. **Виды занятий:** урок-лекция; урок-беседа; урок выполнения практических работ поискового типа; экскурсии; урок выполнения теоретических исследований; викторины; сочетающий различные виды на одном занятии.

Краткое содержание:

Основные понятия и законы химии. Вещество, химический элемент, атом, молекула. Закон сохранения массы веществ, закон постоянства состава, закон Авогадро. Количество вещества, моль, молярная масса, молярный объем газов. Массовая доля. Вычисление массовой доли химического элемента в соединении. Вывод химической формулы вещества по массовым долям элементов. Относительная плотность газов. Установление простейшей формулы вещества по массовым долям элементов с использованием абсолютной и относительной плотности вещества. Вывод формулы вещества по относительной плотности газов и массе (объему или количеству) продуктов сгорания.

Химические реакции. Уравнения химических реакций. Вычисление массы (количества, объема) вещества ПО известной массе (количеству, объему)одного из вступивших в реакцию или получившихся веществ. Тепловой эффект реакции. Термохимические уравнения реакций. Расчеты теплового эффекта реакции по данным о количестве (массе, объему) одного из участвующих в реакции веществ и количеству выделяющейся поглощающейся теплоты. Вычисление массы (количества, объема) продукта реакции, если одно из исходных веществ дано в избытке. Химические свойства углеводородов и способы их получения. Схемы превращений, отражающие генетическую связь между углеводородами: открытые, закрытые смешанные. Вычисление массы (объема) продукта реакции по известной массе (объему) исходного вещества, содержащего определенную массовую долю примесей. Вычисление массовой или объемной доли выхода продукта реакции от теоретически возможного. Вычисление процентного состава смеси веществ, вступивших в реакцию. Схемы превращений, отражающие генетическую связь между классами органических соединений (составить уравнения соответствующих реакций) Практикум: составление схем превращений, отражающих генетическую связь между классами органических соединений. Решение комбинированных задач.

Цифровые датчики. Общие характеристики. Физические эффекты, используемые в работе датчиков.

Биохимия — наука о качественном составе, количественном содержании и преобразованиях в процессе жизнедеятельности соединений, образующих живую материю. История развития биохимии. Роль отечественных учёных в развитии биохимии. Взаимосвязь биохимии с молекулярной биологией, биофизикой и биоорганической химией. Значение биохимии для развития биологии, медицины, биотехнологии, сельского хозяйства, генетики и экологии. Методы биохимических исследований и их характеристика. Использование современных скоростных и автоматизированных физико-химических методов анализа для биохимических целей. Биохимические методы мониторинга окружающей среды.

Понятие о главных биогенных элементах. Макро- и микроэлементы. Закономерности распространения элементов в живой природе. Потребность

организмов в химических элементах. Биогеохимический круговорот веществ в природе — основа сохранения равновесия биосферы. Масштабы обмена веществ в живой природе. Пластические и энергетические вещества. Биологически активные соединения, их роль в жизни человека, животных и растений. Понятие о пестицидах и их видах.

Роль белков в построении и функционировании живых систем. Понятие о протеоме и протеомике. Аминокислотный состав белков. Понятие о протеиногенных аминокислотах. Способ связи аминокислот в белковой молекуле. Пептиды. Природные пептиды (глутатион, вазопрессин, энкефалины, эндорфины и др.), их физиологическое значение и использование в качестве медицинских препаратов. Химический синтез пептидов заданного строения и возможности их применения. Структура белковых молекул. Первичная структура белков. Принципы и методы определения первичной структуры белка. Вторичная и надвторичная структуры белков. Понятие об α- и β-конформациях полипептидной цепи (работы Л. Полинга). Параметры α-спирали полипептидной цепи. Связь первичной и вторичной структур белковой молекулы. Классификация белков по элементам вторичной структуры. Доменный принцип структурной организации белков. Понятие о структурных и функциональных доменах (на примере иммуноглобулинов и каталитически активных белков). Третичная структура белков. Типы связей, обеспечивающих поддержание третичной структуры. Динамичность третичной структуры белков. Самоорганизация третичной структуры белковой молекулы и роль специфических белковшаперонов в этом процессе. Предсказание пространственного строения белков исходя из их первичной структуры. Четвертичная структура белков. Конкретные примеры четвертичной структуры белков (гемоглобин, лактатдегидрогеназа, каталаза и др.). Номенклатура и классификация белков. Функциональная классификация белков и характеристика отдельных групп: структурных, сократительных, защитных, токсических, рецепторных и регуляторных. Белки (металлотионеины, гемоглобин и др.).

Распад белков. Ферменты, осуществляющие распад белков. Протеасомы комплексы протеолитических ферментов. Мажорные белки крови как источники биологически активных пептидов. Метаболизм аминокислот. Конечные продукты распада белков и пути связывания аммиака в организме. Пути новообразования аминокислот. Первичные и вторичные аминокислоты. Заменимые и незаменимые аминокислоты. Биосинтез белков. Матричная схема биосинтеза белков. Активирование аминокислот (синтез аминоацил-тР-НК). Строение рибосом. Состав прокариотических и эукариотических Полирибосомы. трансляции (инициация, рибосом. Этапы элонгация, терминация) и их регуляция. Код белкового синтеза. Особенности генетического кода митохондрий и хлоропластов.

Разнообразие каталитически активных молекул. Каталитически активные белки (энзимы), каталитически активные РНК (рибозимы), каталитически активные антитела (абзимы).Каталитическая функция белков. Различия в свойствах ферментов и катализаторов иной природы. Специфичность

действия ферментов. Роль отечественных учёных (И.П. Павлов, А.Е. Браунштейн, В.А. Энгельгардт и др.) в развитии энзимологии. Понятие о субстратном и аллостерическом центрах в молекуле ферментов. Ферменты мономеры (трипсин, лизоцим) и мультимеры (глутатион-редуктаза). Понятие о коферментах. Коферменты — переносчики водорода и электронов (НАД, НАДФ, ФАД), и атомных групп (АТФ, кофермент-А, НДФ-сахара). Множественные формы ферментов и ИХ функциональное Изоферменты лактатдегидрогеназы. Значение исследования множественных форм ферментов для медицины, генетики, селекции и мониторинга окружающей среды. Механизм действия ферментов. Фермент-субстратные комплексы. Константа диссоциации фермент-субстратного комплекса (KS) и константа Михаэлиса (КМ). Активаторы и ингибиторы ферментов. Влияние ксенобиотиков на активность ферментов. Номенклатура и классификация ферментов. Принципы классификации ферментов. Промышленное получение и практическое использование ферментов. Перспективы практического использования рибозимов и абзимов для борьбы с заболеваниями человека.

История открытия витаминов. Роль витаминов в питании человека и животных. Авитаминозы, гиповитаминозы, гипервитаминозы. Соотношение витаминов и коферментов. Витамерия. Жирорастворимые витамины. Витамин А и его участие в зрительном акте. Витамины D, К и E и их роль в обмене веществ. Водорастворимые витамины. Витамины В1, В2, В5, В6, В12, их значение в обмене веществ. Витамин С (аскорбиновая кислота). Разнообразие антивитамины, соединений: антибиотики, биологически активных фитонциды, гербициды, дефолианты, ростовые вешества (важнейшие представители и механизмы действия).

История открытия и изучения нуклеиновых кислот, их химический состав. Характеристика пуриновых и пиримидиновых оснований, входящих в состав нуклеиновых кислот. Два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Различия между ДНК и РНК по составу главных азотистых оснований, пентозам, молекулярной массе, локализации в клетке и функциям. Структура и функции ДНК. Содержание ДНК в организме и локализация её в клетке (ядро, митохондрии, хлоропласта, эписомы). Размер и формы молекул ДНК. Кольцевая форма ДНК некоторых фагов, митохондрий и хлоропластов. Первичная структура ДНК. Успехи и перспективы в расшифровке структуры геномов микроорганизмов, растений и животных. Проект «Геном человека». Вторичная структура ДНК (модель Дж. Уотсона и Ф. Крика). Комплементарность азотистых оснований и её значение для воспроизведения структуры геномов. Третичная структура ДНК. Сверхспирализация ДНК. Избыточность и компактность молекул ДНК. Строение хроматина. Мутации в ДНК и факторы, их вызывающие. Репарация структуры ДНК и её значение для сохранения видов. Наследственные заболевания. РНК, их классификация (тРНК, рРНК, мРНК, мяРНК, тмРНК, вирусные РНК). Сравнительная характеристика видов РНК по их структуре и функциям. Механизм биосинтеза (репликации) ДНК. Ферменты (РНК-ДНК-полимераза, ДНК-лигаза) белковые полимераза, И факторы. участвующие в репликации ДНК. Репликационная вилка и этапы биосинтеза ДНК. Особенности репликации у про- и эукариот. Биосинтез РНК (транскрипция) и её регуляция у про- и эукариот. Понятие о транскриптонах и Созревание (процессинг) Сплайсинг РНК. И Аутосплайсинг. «Редактирование» РНК. Обратная транскрипция и её значение для существования вирусов (на примере вируса иммунодефицита человека и вирусов гриппа) и внутригеномных перестроек. Понятие о подвижных генетических элементах и их значении для эволюции геномов. Понятие о генетической инженерии. Принципы стратегии молекулярного И клонирования. Достижения и перспективы молекулярной биотехнологии. Классификация углеводов. Простые углеводы (моносахариды) и их представители (рибоза, глюкоза, фруктоза, галактоза). Сложные углеводы. Дисахариды (сахароза, лактоза, мальтоза).Полисахариды, их структура и представители (гликоген, крахмал, клетчатка, хитин). Функции углеводов (энергетическая, метаболическая, рецепторная и др.). Гликопротеины как детерминанты групп крови. Обмен углеводов. Пути распада полисахаридов.

Регуляция фосфоролиза при участии гормонов, G-белков, цАМФ и протеинкиназ. Обмен глюкозо-6-фосфата (дихотомический и апотомический пути). Обмен пировиноградной кислоты. Гликолиз. Спиртовое брожение. Действие этанола на организм человека. Полиферментный комплекс окислительного декарбоксилирования пировиноградной кислоты. Цикл трикарбоновых и дикарбоновых кислот, его значение в обмене веществ и обеспечении организма энергией. Биосинтез углеводов. Понятие о первичном биосинтезе углеводов. Глюконеогенез. Биосинтез олиго- и полисахаридов.

Общая характеристика и классификация липидов. Структура и функции липидов. Роль липидов в построении биологических мембран. Структура и функции липопротеинов. Обмен жиров. Распад жиров и β-окисление высших жирных кислот. Глиоксилевый цикл и его роль во взаимосвязи обмена липидов и углеводов. Механизм биосинтеза высших жирных кислот. Биосинтез триглицеридов. Нарушения в обмене жиров. Ожирение и его причины. Воски, их строение, функции и представители (спермацет, пчелиный воск). Стериды. Стеролы (холестерол, эргостерол и др.). Структура и функции стероидов (холевая кислота, стероидные гормоны). Фосфолипиды. Биологическая роль фосфолипидов. Фосфоинозитиды источники как вторичных посредников гормонов.

История изучения процессов биологического окисления: работы А.Н. Баха, В.И. Палладина, О. Варбурга, В.А. Энгельгардта. Разнообразие ферментов биологического окисления. Системы микросомального окисления в клетке. Цитохром Р-450 и его роль в детоксикации ксенобиотиков. Супероксиддисмутаза, каталаза и их роль в защите организма от активных форм кислорода. Сопряжение окисления с фосфорилированием. Субстратное фосфорилирование и фосфорилирование на уровне электронно-транспортной цепи. Понятие о сопрягающей мембране митохондрий. Строение протонной АТФазы и вероятные механизмы синтеза АТФ.

Классификация гормонов. Стероидные гормоны: кортикостерон, тестостерон, эстрадиол, экдизон. Механизм действия стероидных гормонов. Пептидные гормоны. Характеристика инсулина, гормона роста, тиреотропина, гастрина, вазопрессина. Механизм действия пептидных гормонов (на примере глюкагена и инсулина). Сахарный диабет и его виды. Прочие гормоны (адреналин, ауксин, гиббереллины, цитокинины, простагландины), их структура и механизм действия. Рилизинг-факторы гормонов. Нейрогормоны (эндорфины и энкефалины). Применение гормонов в медицине и сельском хозяйстве.

Общие представления о взаимосвязи обмена веществ в клетке. Понятие о ключевых метаболитах (пировиноградная кислота, кофермент-А и др.). Взаимосвязь белкового и нуклеинового обмена, значение регуляторных белков. Взаимосвязь углеводного и белкового обмена. Роль пировиноградной кислоты и цикла Кребса в этой взаимосвязи. Взаимосвязь обмена углеводов и липидов; роль ацетилкоэнзима-А в этом процессе. Уровни регуляции обмена веществ: клеточный, организменный и популяционный. Транскрипционный (оперонный) уровень регуляции. Основные механизмы регуляции обмена веществ в клетке. Организменный уровень регуляции. Гормональная регуляция обмена веществ. Каскадный механизм регуляции с участием гормонов и вторичных посредников. Популяционный уровень регуляции. Антибиотики микробов, фитонциды растений, телергоны животных и их влияние на процессы жизнедеятельности. Эколого-биохимические взаимодействия с участием различных групп организмов: микроорганизмов, грибов, высших растений, животных. Токсины растений. Пищевые детерренты антифиданты. Пищевые аттрактанты И стимуляторы. Хеморегуляторы, воздействующие на позвоночных животных. Накопление и использование животными вторичных метаболитов растений. Антропогенные биоактивные вещества и проблемы химического загрязнения биосферы. Экологически безопасные способы воздействия на различные виды животных, растений и микроорганизмов.

Строение и состав атома. Составление электронных и электроннографических формул атомов химических элементов. Валентность и степень окисления химических элементов. Периодический закон. Сравнительная характеристика химических элементов по их положению в порядковой системе химических элементов и строению атома.

Постоянная Авогадро. Вычисление структурных единиц в определённом количестве, массе или объёме вещества. Уравнение Менделеева-Клайперона. Способы выражения концентрации растворов (массовая, молярная) Правило смешения растворов, («правило креста»). Кристаллогидраты.

Генетическая связь между классами неорганических и органических веществ. Термохимические уравнения реакций. Тепловой эффект реакции. Закон Гесса. Энтальпия реакций. Скорость химической реакции. Химическое равновесие. Константа равновесия. Реакции в растворах электролитов. Гидролиз солей, рН растворов.

Вычисление массы или объёма продукта реакции по известной массе или объёму исходящего вещества, содержащего примеси.

Вычисление массы (объёма) компонентов смеси веществ полностью или частично взаимодействующие с реагентом. Электролиз расплавов и растворов солей. Стереометрические схемы реакций и расчёты по ним.

Предлагается для проектной работы следующие темы (примерные):

- 1. Качественные реакции на аминокислоты и белки.
- 2. Приготовление раствора белка (яичного альбумина). Разделение белков куриного яйца по их растворимости. Денатурация белков (обратимая и необратимая).
- 3. Сравнительный анализ продуктов кислотного и ферментативного гидролиза ди- и полисахаридов (на примере сахарозы и крахмала).
 - 4. Специфичность действия ферментов (амилаза).
- 5. Влияние на активность ферментов температуры, рН, активаторов и ингибиторов.
 - 6. Выделение рибонуклеопротеинов из дрожжей.
 - 7. Качественное определение продуктов гидролиза рибонуклеопротеинов.
- 8. Выделение гликогена из печени животных. Сопоставление структуры гликогена и крахмала.
 - 9. Разделение углеводов методом тонкослойной хроматографии.
 - 10. Гидролиз жиров под действием липазы.
 - 11. Влияние желчи на активность липазы.
 - 12. Качественные реакции на гормоны.
 - 13. Биогенная классификация химических элементов Биологически активные вещества. Витамины. Биологически активные добавки: профанация или польза? Биологическая роль витаминов.
 - 14. Витамин С и его значение.
 - 15. Искусственные жиры угроза здоровью.
 - 16. Использование дрожжей в пищевой промышленности.
- 17. Исследование физико-химических свойств молока разных производителей,

имеющих экологический сертификат.

18. Иод в продуктах питания и влияние его на организм человека.

Ожидаемые результаты:

- применять основные методы познания: наблюдение, измерение, эксперимент;
- характеризовать термины и понятия, объяснять взаимосвязь между ними;
- обосновывать систему взглядов на живую природу, применяя биологические теории, учения, законы, закономерности, понимать границы их применимости;
- классифицировать основные биологические макромолекулы;
- описывать функции белков, нуклеиновых кислот, углеводов и липидов;
- устанавливать связь строения и функций основных биологических макромолекул, их роль в процессах клеточного метаболизма;

- объяснять значение микро-, макро- и ультрамикроэлементов в клетке;
- понимать сущность биосинтеза белков, механизма действия ферментов, биосинтеза ДНК и РНК, распада белков, биосинтеза и обмена углеводов, биосинтеза и обмена липидов, биологического окисления и синтеза АТФ, механизма действия стероидных гормонов;
- решать задачи на определение последовательности нуклеотидов ДНК и иРНК (мРНК), антикодонов тРНК, последовательности аминокислот в молекуле белка, применяя знания о реакциях матричного синтеза, генетическом коде, принципе комплементарности;
- делать выводы об изменениях, которые произойдут в процессах матричного синтеза в случае изменения последовательности нуклеотидов ДНК;
- обосновывать взаимосвязь пластического и энергетического обменов; сравнивать процессы пластического и энергетического обменов, происходящих в клетках живых организмов;
- характеризовать методы биохимических исследований;
- проводить учебно-исследовательскую деятельность: выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов;

Обучающийся получит возможность научиться:

- выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- выдвигать и проверять экспериментально гипотезы о результатах воздействия различных факторов на изменение скорости химической реакции;
- использовать приобретённые ключевые компетенции при выполнении проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ;
- объективно оценивать информацию о веществах и химических процессах;
- осознавать значение теоретических знаний по химии для практической деятельности человека;
- создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств и др.